ON THE MECHANICAL BEHAVIOR OF PRESTRESSED
GLASS-REINFORCED PLASTICS
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A system of equations describing the behavior of prestressed glass-reinforced plastics is obtained
on the basis of a model of multicomponent medium. A concrete problem, concerned with the concentration
of residual stresses in a plate of such material, is considered.

To describe prestressed glass-reinforced plastics, we proceed from a model of multicomponent me-
dium [1].

Let us have a certain volume V bounded by a surface S. We use oij, uj, ejj to denote the stresses re-
ferred to a unit area, the displacements,and the strains in the filler, and use ij, Vi, £jjto denote the stresses
referred to a unit area, the displacements,and the strains in the reinforcement. We assume that only the
surface forces Fj act on the surface S, while mass forces and moments are absent from the volume V. We
decompose F into two components

Fy= B0 4 2 (1)

where Fi(i) is the surface force acting on the filler, while Fi(Z) acts on the reinforcement. Then for the
surface forces we obtain

F® =cjviy  F® =mjv; (2)

where vj is the unit vector of a normal to S. The conditions of equilibrium of the volume V have the form
{ras=0, [eerd=0 (3)
8 s

where €ijk is the axial tensor of Levi-Civita, and Xy is the j-th component of the Cartesian coordinate sys-
tem. From the first equation of (3) and (2) we have

dii,j+“ij,j=0 (4)
If we introduce the quantity my
J‘Ei == Gi]',j (5)
then from (4) we obtain
iy M =0 My =0 (6)

which constitutes separate equations of equilibrium for the filler and the reinforcement. From the form
of these equations we can conclude that 7; is the vector of the force characterizing the interaction of the
filler and the reinforcement, referred to a unit volume.

From the second equation (3) it follows that

&k (55 4 75) =0 (7)
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From (7) we see that the stress tensors in the general case are not symmetric. Analogously to (5)
we can introduce
By =855 (8)
where X is the moment interaction referred to a unit volume.

If by o(ij)s T(ij) we denote the symmetric parts of stress tensors, then for them the equations of equi-
librium (6)-(8) assume the form [2]

G(mn),m""l/zsimnzi.m_nn:o (9)
Tmn),m — 1/25imﬂzi,m +a,=0 (10)
We now give a concrete form to the properties of the filler and the reinforcement. Above we used

Gijs Tijs the stress tensors referred to a unit area. It is obvious that true stresses acting within the media
must enter the rheological equations, We denote them by Uij* and ”Tij*'

Let o be the fraction of an area occupied by the filler, It is easy to see that o does not depend on
the orientation of the area, but in the general case can be a function of the coordinates (for example, in the
case of reinforcing the material along the radii of the polar coordinate system by filaments of constant
thickness). We then have

*

s =ac;*,  wy; =0-—a)m, (11)

The filler is considered to be a polymerizing medium subject to the equation [3]

3 n
sin={ B e — { eqmms—nar— | e DB+
0 1

¢

+ f texd [jt o=t} o + B, — [ ey (2 dr—
1 0 i)

(12)
t
—jﬂ e,; (1) dEs () + f et | [ mint—mar| +oms,
1 1] [}

where 7 is the degree of polymerization, taken to be known from the chemical kinetics by means of a func-
tion of time; C(y) is a quantity characterizing the shrinkage of the material during the time of polymeriza-
tion; E; and E, are the moduli of elasticity; ¢ and ¢, are the memory functions; 8;j is Kronecker's symbol.

After end of polymerization n =nmax Eq. (12} is transformed into the usual viscoelasticity equation,
while certain constants of addition will characterize the residual stresses which arise in the polymeriza-
tion process.

We assume that the reinforcement constitutes either absolutely flexible filaments which sustain only
tensile stresses directed parallel to the x4 axis, or glass fabric which is arranged in layers parallel to the
XyX, plane, and also sustains only tensile forces along the fibers of the fabric. For the first case we have

Tt = Een, Tloa® = M33® =Og ”(*m =0 for i =,E] (13)
for the second case we have

mu* = Eeny,  7m* = Eaess,  m”" =0y ﬂ&j)=0 for g (14)
i.e., Poisson's ratio for fibers is zero.

We assume that when glass-reinforced plastics are manufactured, the fibers of reinforcement are
first stretched and are then covered by a polymerizing mass. As the polymerization proceeds, the degree
of gluing of the filler and the reinforcement increases, and when one of the media is being deformed, the
interactions mj and Zj arise. These interactions depend on the relative displacement of the media which
take place after the gluing process, and also on the degree of polymerization, while for relaxing bonds it
depends on the rates of displacements

7y = Ky [y — (25 ). 1] (@9)
Z = L;; [eimn (um,n —Uyn T u#:?n), n t] (16)
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where Vj(O) are the initial displacements of the reinforcement up to the removal of the preliminary tension;
Kijs Lij are operators. For an elastic bond, i.e., one not explicitly depending on time, expanding (15) and
(16) in Taylor's series with respect to displacements and confining ourselves to small quantities of the
first order, we obtain
1ty == Ky ) Ly — (0; — 2] 4+ Ko () [z — (01 — 1)) 8 a7
5 =L e, (0 — Pmn 4 200) +La ) 2y (% — P+ Pmin) 83 (18)

for the case of reinforcement by fibers in the x; direction. In the second case (reinforcement by a fabric)
we obtain

a1, = Ka ) [u; — (0, — o) ]+ Ke ) 8, [1r — (01— 2{)] + K5 8,5 [1s — (o — o) (19)
L, =La(n) &y, ( mn — Vma ”rrfor)u) + Li() 8y ("m,n — Ot ”m‘,‘ﬁ) 8, +Lstmey,, (um.n — Ut "m(.or)t) 8, (20)

where Kj(n) and Lj(n) are functions of the degree of polymerization.

Thus adding the Cauchy relationships to Egs. (9)-(13), (17), (18) or (14), (19), (20), for the tensors
eij and &jj we obtain a closed system of equations which describes the behavior of polymerizing glass-re-

inforced plastics.

We consider the problem of determining the residual stresses which arise in the glass-reinforced
plastic material while it is being manufactured. Let a plate of glass~reinforced plastic material, infinite
in the x, direction, have the width 2d(~d = xy = d) and its reinforcement be provided by fibers in the x; di-
rection. The fibers are preliminarily stretched (vi( =pXy).

The polymerization takes place within a closed volume, i.e., there are no displacements within the
filler (uj=0). After hardening we remove constraints from the reinforcement and the filler, i.e., we obtain
the free surfaces oyy =0y =73 =0 for x; =+ d.

As was already stated, after hardening the filler constitutes a viscoelastic medium which can be re-
garded as elastic by applying the Volterra principle to it, i.e.,

Sy = My e + 280, + € (yar) 8y (21)

where A and ¢ are integral operators. The solution of the system (9), (10), (13), (17), (21), for the boundary
conditions considered, has the form

= A sh Y2y uz =0
}‘7+2 r

vy = A sh tx1, o12=0

— E'xn
Gop =} ]:Aych'rzl—m] +C

ou= (A + 2') Ay ch ey +B, wu=-—@0+2W)Aychyn—B

where
5o BV 20 420 — Byt (W + 27 + E') C)
W By
- B _ 1V Er
A —'(7“1 _l_zpl).rch,rd ? v = E'I (7\.'+2}L) (K1+K2) (22)

E=({1—aFE N=ak p=op

From (22) we see that residual stresses will exist in the glass-reinforced plastic material. These
stresses for an elastic glass-reinforced plastic material (A and ¢ are constants and not operators) can be
made equal to zero by choosing the preliminary tension in the form

R 4
=W T —E) © (max) (23)

since the filler volume decreases on hardening, i.e., C(ﬁ) is negative.
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